DOSSEIÔ TÉCNICO

Fabricação de produtos de higiene pessoal

Elisabeth Flávia Roberta Oliveira da Motta

REDETEC – Rede de Tecnologia do Rio de Janeiro

maio
2007
Sumário

1 INTRODUÇÃO ................................................................. 4
PRODUTOS CAPILARES: SHAMPOOS E CONDICIONADORES .............. 4
2 FABRICAÇÃO DE SHAMPOOS ............................................. 3
2.1. Classificação dos shampoos ............................................. 4
2.2 Composição ........................................................................ 4
2.2.1 Produto base .............................................................. 4
2.2.2 Classificação dos Tensoativos ......................................... 5
2.3 Agente Engrossante .......................................................... 5
2.3.1 Agente Engordurante .................................................... 5
2.3.2 Estabilizador de Espuma ............................................... 5
2.3.3 Agente Perolante .......................................................... 6
2.3.4 Agente Conservante ...................................................... 6
2.3.5 Essências e Corantes ..................................................... 6
2.3.6 Aditivos Especiais ........................................................ 6
2.3.7 Diluente ......................................................................... 6
2.4 Elaboração de um shampoo ............................................... 6
2.4.1 Como formular ............................................................ 7
2.4.2 Técnica de formulação 1 ................................................ 7
2.4.3 Técnica de formulação 2 ................................................ 7
2.5 Formulações para xampus .................................................. 7
2.5.1 Shampoo Perolado de jojoba - Cabelos Secos ....................... 7
2.5.2 Shampoo de Calêndula - Cabelos Oleosos ......................... 8
2.5.3 Shampoo de Vitamina A e Jaborandi - Cabelos Normais .......... 8
3 FABRICAÇÃO DE CONDICIONADORES ................................. 8
3.1 Como formular condicionadores ........................................... 8
3.2 Formulações para condicionar ............................................ 9
3.2.1 Condicionador Natural e Aloe Vera e Camomila - Cabelos Secos ... 9
3.2.2 Condicionador Infantil .................................................. 9
3.2.3 Creme Rinse .............................................................. 9
3.3 Shampoos e hidratantes para pessoas que são expostas constantemente aos efeitos da água da piscina sobre a pele e os cabelos .... 10
4 SABONETES .................................................................. 11
4.1 Fabricação ....................................................................... 11
4.1.2 Processo de fabricação de sabonetes ................................. 11
4.2 Matérias-primas .............................................................. 12
4.2.1 Matérias-primas essenciais .......................................... 12
4.2.2 Matérias-primas secundárias ........................................ 12
4.2.3 Coadjuvantes de fabricação .......................................... 12
4.3 pH ............................................................................. 13
4.4 Surfactantes ................................................................... 13
4.5 Sistema de fervura integral ............................................... 13
4.6 Sistema de semi-fervura .................................................... 13
4.7 Sistema processo fervura e a frio ........................................ 13
4.8 Acabamento dos sabões .................................................... 14
4.8.1 Sistema automática secagem contínua a vácuo .................... 14
4.8.2 Sistema de resfriamento em estrutura própria .................... 14
4.8.3 Resfriamento em tambor ............................................... 14
5 Processamento de sabonetes ................................................. 14
5.1 Precauções ..................................................................... 15
5.2 Uso de corantes e essências .............................................. 15
DOSSIÊ TÉCNICO

Título
Fabricação de produtos de higiene pessoal

Assunto
Fabricação de cosméticos, produtos de perfumaria e de higiene pessoal

Resumo
Este dossiê tem como objetivo oferecer informações sobre o processo de fabricação de produtos de higiene pessoal (sabonetes líquido e em barra; shampoos; perfumes; cremes corporais), abordando os cuidados especiais para seleção de matérias-primas, maquinários, embalagens, bem como a Legislação básica que regulamenta as atividades de produção e manipulação de produtos de higiene pessoal.

Palavras chave
Fabricação; produção; higiene; sabonete; cosmético; xampu; condicionador de cabelo; perfume; creme hidratante; processamento

Conteúdo

1 INTRODUÇÃO
Cosmético é aquilo que é relativo à beleza humana. Alguns produtos de higiene pessoal podem ser considerados cosméticos. Substância ou tratamento aplicado à face ou a outras partes do corpo humano para alterar a aparência, para embelezar ou realçar o atractivo da pessoa. Tais preparados podem ser aplicados à pele, às unhas ou ao cabelo.

O mercado de cosméticos é dominado por companhias de grande porte, mas há espaço para empresas pequenas e até microempresas, desde que seus gestores estejam preparados para enfrentar a concorrência e sejam criativos para encontrar nichos pouco explorados ou até desprezados.

Por tais razões, o desenvolvimento de um cosmético deve começar por uma pesquisa de mercado. Em seguida devem ser identificadas as matérias-primas cujas propriedades permitam a fabricação do produto desejado pelo consumidor.

PRODUTOS CAPILARES: SHAMPOOS E CONDICIONADORES

Os cabelos são classificados segundo os seguintes tipos de cabelos: normais; secos e oleosos. O aparecimento de cabelos secos (ressecados) e cabelos gordurosos liga-se em princípio ao funcionamento irregular das glândulas sebáceas do couro cabeludo, que poderá ser proveniente de diversas causas, tanto internas como externas. Pode-se citar o desequilíbrio do sistema nervoso ou também lavagens excessivas dos cabelos, com consequente aumento na produção de gorduras. Já os cabelos secos se apresentarão ásperos e quebradiços, podendo haver formação de caspa seca, ao contrário dos oleosos propensos ao aparecimento da seborréia oleosa. A formação de caspa poderá servir como meio de cultura para microrganismos ocorrendo com isto uma série de problemas, podendo ocasionar a queda dos fios.

2 FABRICAÇÃO DE SHAMPOOS
Shampoos são produtos que se destinam à limpeza e consequentemente higiene e embelezamento dos cabelos e couro cabeludo.

2.1. Classificação dos shampoos

Os shampoos podem ser classificados da seguinte forma:

2.1.2 shampoos líquidos
2.1.2.1 Shampoos líquidos transparentes
2.1.2.2 Shampoos líquidos opacos: com ou sem brilho pérola

2.1.3 Shampoos cremosos: com ou sem brilho pérola

2.1.4 Shampoos gel
2.1.4.1 Shampoos gel Transparentes
2.1.4.2 Shampoos gel Opacos - perolados ou não

2.1.5 Quanto o efeito sobre o couro cabeludo e fios:
2.1.5.1. Para cabelos normais
2.1.5.2. Para cabelos oleosos
2.1.5.3. Para cabelos secos
2.1.5.4. Para casos especiais

2.2 Composição

Quanto as matérias-primas tem-se: produto base (detergente); agente engrossante; agente engordurante; estabilizador de espuma; agente perolante; agente conservante; essências e corantes, aditivos especiais; diluente.

2.2.1 Produto base

Para a elaboração de xampus os componentes básicos utilizados são as substâncias orgânicas tensoativos, isto é, são aquelas que apresentam a propriedade de reduzir a tensão superficial da água e de outros líquidos. A tensão superficial (TS) da água é de 72,6 dinas/cm a 20 graus, pela adição de pequenas quantidades de tensoativos, ela é reduzida para 30-40 dinas/cm.

Entende-se como TS a força, medida em dina, necessária para que a superfície de um líquido se espalhe por 1 centímetro, é resultante das forças de coesão entre as moléculas de um líquido. Como as moléculas da superfície praticamente não sofrem forças de atração pelas moléculas do ar acima do líquido, forma-se uma resultante em direção ao interior deste.

Como consequência da TS um líquido tenderá a formar sempre a menor superfície de contato possível com o ar. Este fenômeno é exemplificado pela gota d’água sobre uma superfície plana:

a) gota sem adição de tensoativo;
b) gota após adição e tensoativo.

Os tensoativos apesar de apresentarem uma composição química muito variável, apresentam a característica comum, a de sua molécula apresentar um componente hidrófilo e outro hidrófobo.

Pode-se esquematizar uma molécula de um composto tensoativo do seguinte modo:
I. Radical hidrófobo (insolúvel em água).
II. Radical hidrófilo, fortemente polar (solúvel em água).

Quanto a situação dos grupos hidrófilos pode-se distinguir os seguintes:

a) Posição terminal: apresentam ótimo poder detergente;
b) Posição central; fraco poder detergente, pouco solúvel na água, porém bom poder
dispersante;

c) Vários grupos: fraco poder detergente, boa solubilidade em água, apresentando porém bom poder dispersante. Quando um tensoativo é dissolvido em água, as suas moléculas orientam-se de tal maneira que as extremidades hidrófilas se dirigem para água e as hidrófobas para as interfaces, água/recipiente ou água/ar.

Havendo outro corpo presente (por exemplo sujeira) este também será envolto por uma película de tensoativo, orientada da mesma forma. Em função deste fenômeno de orientação dos produtos tensoativos quando em solução tem-se a formação de espuma e o poder detergente. Quando uma bolha de ar penetra na solução, forma-se na interface ar/água ou impureza/água um filme de tensoativo, que pode no primeiro caso, sair do meio, envolvendo uma fina película de água, e no segundo caso, a partícula de impureza tende a manter-se suspensa no meio. Assim no caso específico, que é a limpeza dos cabelos contaminados por impurezas de característica graxa, ocorre o mesmo fenômeno de orientação, havendo com isto a formação de uma micela a qual se solta do fio de cabelo.

Outrossim, como a película de tensoativo que envolve as partículas de impurezas apresentam uma carga elétrica semelhante há uma repulsão entre estas e o fio de cabelo. Com isto evita-se que ocorra uma nova deposição das impurezas sobre o cabelo.

2.2.3 Classificação dos Tensoativos

- **Não iônicos**: possuem um radical hidrófobo e um hidrófilo. São considerados bons emulsionantes, umectantes ou solubilizantes. Ex.: Alcanolamidas de ácidos graxos.

- **Catiônicos**: apresentam em solução íons tensoativos positivos, o radical hidrófobo é um cátion. Possuem características bactericidas e antissépticas, sendo pois sua aplicação um complemento no tratamento dos cabelos.

- **Anfóteros**: são produtos que em meio ácido formam cátions positivos e em meio alcalino ânions carregados negativamente. Ex.: Betaina (ácidos graxos clorados e a trimetilamina). Utilizados na preparação de shampoos não irritantes para as mucosas, como xampu infantil, ou associados a outros detergentes conferem ao produto final efeitos especiais.

- **Aniônicos**: radical ativo é um ânion. De todos os detergentes atualmente são os mais usados. Devem possuir de 12 a 16 Carbonos, característica que proporciona um melhor poder detergente e espumante. Ex.: Lauril sulfato de sódio, Lauril éter sulfato de sódio, Lauril éter sulfato de trietanolamina.

2.3 Agente Engrossante

Como agentes engrossantes encontra-se uma série de produtos que podem ser utilizados. Entre estes pode-se citar sais, alginatos, CMC, MC. As principais são as alcanolamidas de ácidos graxos pois apresentam uma série de vantagens sobre os anteriores, tais como poder engordurante e estabilizador de espuma. Os primeiros apresentam inconvenientes como turvação, influenciam a transparência e na estabilidade do produto. As alcanolamidas que apresentam ótimo poder engrossante são: dietanolamida do ácido graxo de côco, do ácido mirístico, láurico e oléico.

2.3.1 Agente Engordurante

Para se evitar a retirada excessiva de gordura pelo tensoativo, utiliza-se os agentes engordurantes. Os mais usados: alcanolamidas, lanolina e derivados hidrossolúveis, derivados de lecitina, etc.

2.3.2 Estabilizador de Espuma
Popularmente é aceito um xampu que apresente bom poder espumante, pois acredita-se que o efeito de limpeza encontra-se ligado ao poder espumante, o que na realidade não ocorre. Pôr exemplo os não iônicos com alto grau de etoxilação apresentam poder de limpeza bom, porém fraco poder espumante. A formação de espuma depende do pH da solução, do conteúdo em eletrólitos e da dureza da água. Pode-se melhorar ou estabilizar o poder espumante de um xampu pela adição de vários componentes, tais como carboximetilcelulose, fosfatos, alcanolamidas, etc. Normalmente estas últimas favorecem a formação de uma espuma de pequenas bolhas as quais apresentam melhor estabilidade.

2.3.3 Agente Perolante

Em casos especiais pode-se desejar que o xampu apresente aspecto sedoso ou perolado e para tanto lança-se mão de certos aditivos os quais sob certas condições apresentam esta característica. Tais aditivos são ésteres de ácidos graxos, sabões metálicos e certas alcanolamidas de ácidos graxos.

Para obter o brilho desejado com tais produtos deve-se seguir e manter certas condições e métodos de trabalho, caso contrário obterá efeitos indesejáveis e inesperados. Para facilitar o trabalho do fabricante de xampus, diversas firmas apresentam produtos concentrados, líquidos pastosos, que evitam tais inconvenientes e favorecem o trabalho.

2.3.4 Agente Conservante

Devido a presença de água e como o xampu é uma associação de diversos componentes orgânicos, apresentam a susceptibilidade de serem atacados por microorganismos os quais provocam uma grande alteração, tornando-o inadequado ao consumo. Ex.: Metil e propilparabenos (Nipagin e Nipazol).

2.3.5 Essências e Corantes

O apelo de marketing é determinante para a elaboração de um produto que satisfaça as expectativas do consumidor, porém é bom lembrar que a presença destes produtos pode comprometer a qualidade do xampu, provocando alterações na transparência, viscosidade, estabilidade e cor final.

2.3.6 Aditivos Especiais

São todos os produtos acrescentados ao produto para caracterizá-lo. Por exemplo: Algas Marinhas. Acedido ao xampu para cabelos normais tem-se; Shampoo de Algas Marinhas (Cabelos Normais).

Deverão ser rigorosamente observados: solubilidade do produto, estabilidade, compatibilidade com o restante da formulação, etc.

2.3.7 Díluente

O diluente mais utilizado é a água. Deve-se preferir o uso de água tratada, destilada e ionizada.

2.4 Elaboração de um shampoo

Inicialmente escolhe-se o produto base (detergente) e a alcanolamida. Assim, para cabelos gordurosos utiliza-se normalmente um lauril (éter) sulfato de sódio associado a uma dietanolamida de ácido graxo de côco.

Para cabelos normais procura-se usar um lauril (éter) sulfato de trietanolamina ou monoetanolamina associado a uma dietanolamina de ácido graxo de côco. Já para os cabelos secos seguirá a mesma idéia do anterior, variando as concentrações do tensoativo e da dietanolamina.
Nos casos de xampus que devam ter uma compatibilidade especial para com a epiderme e as mucosas, utiliza-se um dos componentes acima associados a um detergente anfótero, o que aliás seria a situação ideal.

O passo seguinte é a colocação ou não do agente perolizante, caracterizando o xampu como perolado ou transparente. A seguir virão a essência, aditivos e a água. Os conservantes poderão ser dissolvidos no diluente ou solubilizados na dietanolamina de côco.

2.4.1 Como formular

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Seco</th>
<th>Oleoso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauril éter sulfato de sódio</td>
<td>25-30%</td>
<td>25%</td>
<td>30-40%</td>
</tr>
<tr>
<td>Lauril sulfato de trietanolamina</td>
<td>5-8%</td>
<td>8-10%</td>
<td>-</td>
</tr>
<tr>
<td>Dietanolamina de ácido graxos</td>
<td>2-3%</td>
<td>3-3,5%</td>
<td>1,5-2,5%</td>
</tr>
<tr>
<td>Anfótero betaínico</td>
<td>3-4%</td>
<td>4-4,5%</td>
<td>2-3%</td>
</tr>
<tr>
<td>Conservantes</td>
<td>qs</td>
<td>qs</td>
<td>qs</td>
</tr>
<tr>
<td>Agente perolante</td>
<td>1,5 - 3%</td>
<td>2,5 - 3%</td>
<td>1 - 1,5%</td>
</tr>
<tr>
<td>Essência</td>
<td>0,3 - 0,6%</td>
<td>0,3 - 0,6%</td>
<td>0,3 - 0,6%</td>
</tr>
<tr>
<td>Aditivos</td>
<td>1 - 6%</td>
<td>1 - 6%</td>
<td>1 - 6%</td>
</tr>
<tr>
<td>Água qsp 100</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Ácido cítrico</td>
<td>0,05 - 0,05-0,5%</td>
<td>0,05 - 0,5%</td>
<td>0,05 - 0,5%</td>
</tr>
<tr>
<td>NaCl</td>
<td>0,5 - 2%</td>
<td>0,5 - 2%</td>
<td>0,5 - 2%</td>
</tr>
<tr>
<td>Corante</td>
<td>qs</td>
<td>qs</td>
<td>qs</td>
</tr>
</tbody>
</table>

2.4.2 Técnica de formulação 1

1) Pesar os conservantes junto a dietanolamida, caso sejam sólidos. Se não dissolvê-los à parte na água.
2) Levar ao fogo, a menos de 40º C para dissolução (sólidos).
3) Acrescentar o agente perolante, o anfótero, a essência, aditivos. Não esquecer de homogeneizar o produto após a adição de cada item.
4) Acrescentar os tensoativos. Mexer bem.
5) Adicionar o ácido cítrico à água. Esperar completa dissolução.
6) Acrescentar a água aos poucos. Agitar demoradamente.
7) Verificar o pH. Este deverá estar entre 5,5 e 6,5.
8) Acrescentar o corante.
9) Aguardar a diminuição da espuma.
10) Acrescentar aos poucos o NaCl.
11) Fazer o acerto da viscosidade. Ideal: entre 1000 e 3000cP.
12) Esperar o total desaparecimento da espuma. Embalar.

2.4.3 Técnica de formulação 2

1) Pesar o conservante com a dietanolamida. Aquecer.
2) Acrescentar item por item, homogeneizando sempre, na ordem acima.
3) Proceder da mesma forma.
2.5 Formulações para shampoos

2.5.1 Shampoo Perolado de jojoba - Cabelos Secos

Texapon HBN......................26%
Texapon AM..........................8%
Comperlan KD........................3,5%
Deyton KB............................3%
Deykont PK 771......................2%
Nipagin.............................0,06%
Nipazol...............................0,24%
Essência.............................0,5%
Água qsp ..........................100ml
Óleo de Jojoba.......................3%
Ácido cítrico qs pH 6...........0,1%
NaCl..................................1,5%
Corante qs
Técnicas.

2.5.2 Shampoo de Calêndula - Cabelos Oleosos

Texapon HBN........................29%
Plantaren 1200.....................3%
Comperlan KD......................2%
Deyton KB............................2%
Essência..............................0,4%
Nipagin..............................0,26%
Nipazol.................................0,04%
Água qsp ..........................100ml
Calêndula Extrato glicólico.......4%
Ácido cítrico pH 5,5..............0,5%
NaCl.................................1,5%
Corante qs
Técnicas.

2.5.3 Shampoo de Vitamina A e Jaborandi - Cabelos Normais

Texapon HBN........................22%
Texapon AM..........................6%
Comperlan KD........................3%
Deyton KB............................2,5%
Essência..............................0,5%
Nipagin..............................0,24%
Nipazol.................................0,06%
Água qsp ..........................100ml
Vitamina A Palmitato ..............0,1g
Extrato glicólico Jaborandi 8%.....8%
Ácido cítrico pH 6-7...............0,3%
NaCl..................................2%
Corante qs
Técnicas.

3 FABRICAÇÃO DE CONDICIONADORES

Condicionadores são uma associação de diversos produtos que apresentam certas características as quais complementam o tratamento do cabelo. Chama-se de Condicionadores aos produtos de caráter catiônico acrescidos de aditivos, proporcionando um produto final mais elaborado.

Chama-se de Creme Rinse, ao produto que contém somente a base com característica catiônica.
O condicionador deverá possuir caráter catiônico, pois isto permite uma afinidade para com a queratina e nesta se fixam, dando certas peculiaridades ao cabelo. Dependendo do tipo de cabelo e do tipo de shampoo utilizado previamente, a composição em linha geral é a seguinte:
1) apresentar pouco poder antiestático;
2) apresentar certo poder engordurante;
3) apresentar pH ácido.

No item 1 tem-se que, devido a eliminação da eletricidade estática há uma facilidade no pentear, ficando o cabelo solto e relativamente macio.
No item 2, em alguns casos o xampu desengordura em excesso e é necessária a reposição desta gordura sobre o cabelo e couro cabeludo.
No item 3, como é conhecido, normalmente o detergente catiônico exerce seu efeito em meio ácido, outrossim no caso de usar um sabão para a limpeza dos cabelos, este haverá de modificar o pH do couro cabeludo e por meio de um produto ácido a volta do pH da epiderme será mais acelerada. Observa-se que se deve utilizar um ácido fraco e nunca um ácido forte, que prejudicará os cabelos.

3.1 Como formular condicionadores

<table>
<thead>
<tr>
<th>Álcool ceto estearílico</th>
<th>4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amônio quaternário</td>
<td>2,5 - 3,5%</td>
</tr>
<tr>
<td>Ácido cítrico</td>
<td>0,5%</td>
</tr>
<tr>
<td>Essência</td>
<td>0,4 - 0,6%</td>
</tr>
<tr>
<td>Água qs</td>
<td>100ml</td>
</tr>
<tr>
<td>Aditivos</td>
<td>2-6%</td>
</tr>
<tr>
<td>Conservantes qs</td>
<td></td>
</tr>
</tbody>
</table>

Técnica:
1) Pesar todos os ingredientes. Levar ao fogo por 20 min em temperatura de 78°C a 82°C.
2) Agitar constantemente.
3) Homogeneizar até 30°C.
4) Acrescentar a essência e o aditivo, se for o caso.
5) Verificar o pH. Deve estar aproximadamente 4-4,5.

3.2 Formulações para condicionar

3.2.1 Condicionador Natural e Aloe Vera e Camomila - Cabelos Secos

| Lanette O..................4% |
| Deyquart A.................3,5% |
| Ácido cítrico..............0,5% |
| Extrato glicólico de Aloe vera...2% |
| Extrato glicólico de Camomila..2% |
| Essência......................0,6% |
| Água qs 100ml..............87.40% |
| Corante qs                |
| Conservante qs            |

Técnica.

3.2.2 Condicionador Infantil

| Lanette O..................4% |
| Deyquart A.................3,0% |
| Ácido cítrico..............0,4% |
| Água.........................89,20% |
| Extrato glicólico de Erva-doce..3% |
| Essência......................0,4% |
| Conservante qs            |
| Corante qs                |
3.2.3 Creme Rinse

Lanette O.................4,5%
Deyquart A.............2,5%
Água qs...............98,4%
Conservante qs
Corante qs
Ácido cítrico.........0,6%.
Técnica.

3.3 Shampoos e hidratantes para pessoas que são expostas constantemente aos efeitos da água da piscina sobre a pele e os cabelos

A água das piscinas é frequentemente tratada com cloro e outras substâncias químicas, cujo contato prolongado com o corpo humano pode ser prejudicial a este. Um dos problemas mais frequentemente encontrado pelos nadadores é o ressecamento da pele e dos cabelos, o que cria a necessidade do uso de produtos que promovam uma hidratação mais intensa e profunda nestas partes do corpo.

Os sabonetes líquidos, por possuírem PH neutro (mais próximo do da pele) e serem capazes de agregar mais facilmente os componentes hidratantes benéficos para a pele, são mais indicados do que os em barra.
Os sabonetes glicerinados também são indicados, pois que a glicerina é uma substância umectante (que atrai água). A glicerina é uma substância naturalmente formada no processo de fabricação do sabão, porém é separada e revendida pelos fabricantes comerciais.

Os xampus devem ter formulação própria para cabelos secos, e assim como as loções hidratantes e os sabonetes, podem ser enriquecidos com elementos ativos naturais e suaves, como extratos de camomila, calêndula, erva-doce, aveia, aloe vera, óleos de andiroba e de amêndoas, manteiga de sementes cupuaçu e outros produtos vegetais que possuem propriedades terapêuticas hidratantes.

Segue abaixo as formulações:

<table>
<thead>
<tr>
<th>Item</th>
<th>Descrição</th>
<th>Qtd(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lauril Eter Sulfato de Sódio</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Dietanolamina do Ácido Graxo de Côco (Amida 90)</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Anfoteró Betainico</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Óleos ou extratos vegetais hidratantes</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Água</td>
<td>52,85</td>
</tr>
<tr>
<td>6</td>
<td>Metil Parabeno (Nipagim)</td>
<td>0,1</td>
</tr>
<tr>
<td>7</td>
<td>Essência</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Corante (Opcional)</td>
<td>QS</td>
</tr>
<tr>
<td>9</td>
<td>Base Peroalizante</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Ácido Cítrico</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Misturar 1,2,3,4,5,6
Adicionar 7,8,9,10
Homogenizar

Fonte: <http://www.respostatecnica.org.br>
SABONETES

Os sabonetes em barra são os mais consumidos no Brasil. Segundo a ABIHPEC (Associação Brasileira da Indústria de Higiene Pessoal e Cosmético), são consumidas 218 mil toneladas de sabonetes em barra e 4,8 mil toneladas de sabonetes líquidos.

Antes de qualquer coisa, é preciso entender a função do sabonete. Na Antiguidade, os magos indicavam o banho para lavar a alma. No Império Romano, era comum o banho público, muito utilizado para discussões sociais. No Brasil, os índios surpreenderam os europeus com o costume de banharem-se duas ou três vezes ao dia. E não podíamos esquecer de Cleópatra, que se banhava com leite de cabra. Seja qual for o estilo, durante o banho, o sabonete tem como principal função limpar a pele, removendo as impurezas e eliminando os resíduos da pele.

"A tecnologia para fabricação de sabonetes evoluiu muito nos últimos tempos e estes produtos ganharam outras funções, como hidratar e proteger, mas eliminar a poeira, as células mortas, o excesso de óleo e suor produzido pelas glândulas ainda é a função básica de todo sabonete", ensina o dermatologista Humberto Ponzio, professor de dermatologia da Universidade Lutherana do Brasil, em Porto Alegre. (http://www.anaisdedermatologia.org.br)

4.1 Fabricação

Segundo Janice Marques (http://www.anaisdedermatologia.org.br), a diferença no processo de fabricação de sabonetes líquidos e em barra está na base. A base para os sabonetes em barra é obtida através da reação de gorduras vegetais ou animais com soda cáustica. Após esse processo são adicionados preservativos, corantes e o produto é prensado. Os sabonetes líquidos são obtidos em uma única etapa através da mistura de surfactantes sintéticos com itens como: preservativos, emolientes, corantes, hidratantes e perfumes.

Diferença entre sabonetes líquidos e em barra

Devido ao processo de fabricação, é muito mais fácil agregar um número maior de ingredientes benéficos para a pele aos sabonetes líquidos. Além disso, os sabonetes líquidos, em sua maioria, possuem pH neutro (mais próximo ao da pele).

Quais são as novidades neste mercado? Apesar da evolução no processo de produção, formulação e na quantidade de benefícios agregados aos sabonetes, não há muitas novidades nos tipos. Segundo a dermatologista Ediléia Bagatin (<<
Os sabonetes são destinados à limpeza corporal, compostos de sais alcalinos, ácidos graxos ou suas misturas ou em outros agentes tensoativos ou suas misturas, podendo ser coloridos e/ou perfumados e apresentados em formas e consistência adequadas ao seu uso. A fabricação de sabonetes sólidos é dividida em dois processos: Saponificação; Acabamento.

Para a saponificação emprega-se como matéria prima sebo de gado e óleo de coco, que são compostos de glicerina e ácido graxo, a soda cáustica é adicionada e o sal serve como removedor de impurezas. Na saponificação existem três sistemas a serem empregados: Fervura integral; Semi fervura; Fervura e a frio.

### 4.2 Matérias-primas

Para fins práticos, as matérias-primas empregadas na fabricação de sabões estão divididas em três grupos:

- essenciais
- secundárias
- coadjuvantes

#### 4.2.1 Matérias-primas essenciais

- a) Matérias graxas - podem ser de origem animal ou vegetal. São de origem animal: o sebo, a graxa de porco, a graxa de ossos, a graxa de cavalo, a graxa de lã, etc. De origem vegetal: azeite de oliva, óleo de coco, óleo de palma, azeite de algodão, óleo de rícino, azeite de girassol, etc.

- b) Matérias alcalinas. As substâncias alcalinas que contêm sódio produzem sabões sólidos; aquelas que contêm potássio produzem sabões moles. Os álcalis mais usados são o hidróxido de sódio (soda cáustica) e o carbonato de potássio ($K_2CO_3$), conhecido simplesmente como potassa.

#### 4.2.2 Matérias-primas secundárias

São aqueles componentes que, incorporados ao produto, melhoram a qualidade ou diminuem o custo. Podem ser: resinas, substâncias de recheio, corantes e perfumes.


- b) Matérias de recheio (cargas) - O principal objetivo da incorporação dos componentes de recheio é a redução de custos. Muitas vezes, sacrifica-se a qualidade do produto por um rendimento maior. Contudo, alguns sabões têm suas qualidades melhoradas com a incorporação de pequena quantidade de silicato de sódio, o que os tornam mais sólidos e duráveis. Nos sabonetes não é conveniente o uso de matérias de recheio. Substâncias mais empregadas: silicato de sódio, carbonato de sódio, caulim, talco, açúcar, caseína, amido, bórax, dentre outras.

- b) Corantes e perfumes – O uso de corantes visa melhorar o aspecto do sabão e agradar à vista. Podem ser de origem animal, vegetal ou mineral. Para perfumar, são empregadas essências liposolúveis.
4.2.3 Coadjuvantes de fabricação
As matérias-primas consideradas como coadjuvantes são aquelas empregadas como veículo no processo de fabricação. As principais são a água e o cloreto de sódio (sal de cozinha).

4.3 pH
Os sabonetes em barra, em sua maioria, possuem pH alcalino (pH~10,5) e os sabonetes líquidos podem ter seu pH ajustado para neutro (ph=7) ou próximo da pele (pH~4,8 - 5,5). Existem sabonetes em barra que são preparados com surfactantes sintéticos suaves e possuem pH neutro. Existem também os sabonetes com pH alcalino, mas que contêm ingredientes especiais que os tornam mais suaves que os sabonetes comuns.

4.4 Surfactantes
Concentração de ativos que são responsáveis pelo processo de limpeza da pele. No caso de sabonetes em barra, a concentração de ativo gira em torno de 70 - 85%, enquanto que nos sabonetes líquidos esta taxa cai para 15-20%.

4.5 Sistema de fervura integral
É considerado o melhor e mais empregado, isso porque ele pode produzir sabão e sabonetes mais puros e também subprodutos de glicerina. Nesse processo, a gordura, o óleo e a soda cáustica líquida são adicionados numa caldeira e processados, seguindo-se os estágios abaixo:
Fervura;
Salga;
Lavagem;
Fervura para lavagem;
Sedimentação.
Em um segundo estágio os ingredientes são separados, na camada superior fica o sabão e na camada inferior os restos de sabão e glicerina. Após um período de poucos dias ficam três camadas distintas sendo elas:
Primeira camada superior de sabão puro (líquido);
Segunda camada intermediária de nigre;
Terceira camada inferior de restos de sabão.
Na fabricação dos sabonetes, as matérias graxas devem ser tão puras quanto possível e a saponificação dos mesmos deve ser feita de forma apropriada para ter:
0.1% máximo de insaponificáveis;
0,5% máximo de cloreto de sódio;
0,05% máximo de soda livre do produto final.
Para sabonetes sólidos, em barra é aconselhável ter-se uma composição de matérias graxa que resulte em índice INS =160 a 170 e índice ISS= 1,5 a 1,9 (RITTER, 1995, p358).

4.6 Sistema de semi fervura
Este processo é geralmente empregado para preparação sabão de potassa ou sabão macio a partir de óleo de coco. Equivalentes quantidades de gordura, óleo e álcali são aquecidos e misturados num caldeirão próprio ou máquina de misturar sabão até que a saponificação seja completa. Esse método geralmente apresenta fracos resultados porque produz sabão contendo muitas impurezas. Outra desvantagem é que a glicerina não pode ser extraída nesse método.

Comparado ao processo de fervura integral, que minimiza o conteúdo de álcali do sabão líquido para menos de 0,1%, o processo de semi fervura deixa mais de 0,3% de álcali no sabão líquido. Além do que a possível presença de gordura não saponificadas no sabão
líquido provoca a oxidação, o descoramento e o desprendimento de odores. O hipossulfito de sódio ou qualquer outro anti-oxidante é frequentemente adicionado para minimizar esta tendência.

4.7 Sistema processo fervura e a frio

Neste processo, gorduras e óleos e uma solução alcalina são misturados em proporções equivalentes em um misturador de sabão, onde se forma uma emulsão. Esta emulsão é colocada numa estrutura de resfriamento, onde a saponificação é efetivada a uma temperatura razoavelmente quente, por um período de vários dias. As características dos sabões líquidos produzidos pelo processo a frio são similares àqueles sabões produzidos pelo processo de semi-fervura. Tanto o processo de semi-fervura, quanto o processo a frio são econômicos e simples na preparação de sabões de potassa, requerendo investimentos pequenos em equipamentos e técnicas não sofisticadas. O uso de ambos os processos, contudo, está apresentado notável decréscimo em virtude da pobre qualidade do sabão produzido e da impossibilidade da recuperação de glicerina e, como se sabe, a produção de sabonetes exige uma alta qualidade do produto que, aliás, é o fator crítico.

4.8 Acabamento dos sabões

Há três sistemas para a fase de acabamento:
- a) Sistema automática secagem contínua a vácuo;
- b) Sistema de resfriamento em estrutura própria;
- c) Resfriamento em tambor.

4.8.1 Sistema automática secagem contínua a vácuo

É um aparelho capaz de continuamente, produzir, sabões através de sabão líquido. O sabão líquido é enviado por uma bomba e é aquecido pelos permutadores de calor e secado pelo secador - spray a vácuo, sendo pulverizado. Em seguida, é amassado pela máquina amassadora, conduzido pelo condutor até a máquina misturadora onde recebe perfume e coloração. O sabonete é transformado em tabletes, novamente amassado pela máquina amassadora e extrusado, cortado, secado e estampado, transformando-se em sabonetes.

4.8.2 Sistema de resfriamento em estrutura própria

O perfume e o pigmento são adicionados ao líquido e misturados na máquina misturadora de sabão. Após o término da mistura, o sabão é colocado na estrutura de resfriamento, através do conformador inferior e deixado resfriar durante dois ou três dias para adquirir solidez. Depois as quatro chapas do conformador são removidos (as) e então o sabonete é cortado longitudinalmente e lateralmente em tamanhos adequados, em seguida, cada pedaço é estampado com a marca registrada do fabricante. Este sistema serve para pequenas produções. Esse processo é ideal para a produção de sabão utilizado para banhos.

4.8.3 Resfriamento em tambor

O sabão líquido é bombeado no misturador de sabão através de uma bomba, junto com carbonato de sódio, se necessário. O sabão líquido, após a mistura, é espalhado sobre a superfície do tambor de resfriamento localizado abaixo, em fina camada de espessura uniforme. Como o interior do tambor rotativo é esfriado com água, a placa de sabão é formada em sua superfície. Essa placa é retirada e, em seguida, submetida ao processo de mistura, refinamento conformação pela máquina amassadora dúplex a vácuo e transformada em barras de sabão, conforme o processo anterior, o sabão é cortado, secado e estampado. Esse processo é ideal para a produção de sabão utilizado em lavanderia.

Fonte:< http://www.respostatecnica.org.br>
5 PROCESSAMENTO DE SABONETES

a) Dissolver a soda cáustica em 2 (dois) litros de água, no mínimo 8 horas e, no máximo, 24 horas antes de fazer o sabão. Esta solução é conhecida como lixívia, que é a soda cáustica a 50% estabilizada.

Atenção:
Para esta operação não usar recipientes de alumínio e tomar cuidado ao manusear a soda ou a lixívia, pois se trata de produtos cáusticos que queimam a pele.

b) Derreter as gorduras, isto é, o sebo e o óleo de babaçu, juntamente com o breu. O breu deve ser primeiramente transformado em pó, para ser melhor dissolvido. Levar para aquecer.

c) Acrescentar à soda já dissolvida nos 2 (dois) litros de água, o restante da água (mais dois litros). Juntar o silicato de sódio e o caulim, misturando muito bem.

d) Estando as gorduras derretidas e à temperatura de mais ou menos 50ºC, interromper o aquecimento.

e) Adicionar vagarosamente a soda e os demais ingredientes, agitando a massa continuamente com uma pá de madeira, tipo remo, até começar a engrossar. Manter a agitação para obter uma massa espessa e uniforme. A temperatura da mistura irá subir, devido às reações químicas.

f) Quando a massa atingir o ponto, despejar o sabão nas formas.

g) Após colocar o sabão nas formas, esperar aproximadamente 6 horas para desenformá-lo. Durante este tempo, os componentes estarão reagindo entre si, com liberação de calor, podendo a temperatura da massa atingir os 80ºC.

5.1 Precauções

Uma vez iniciado, o processamento não deve se interrompido. Caso haja interrupção, a massa irá se solidificar, mesmo antes do sabão estar pronto. Não se deve levar o produto novamente ao fogo para dissolver a massa e continuar o processamento, pois poderão ocorrer acidentes graves. Como o calor irá dissolver primeiramente a camada inferior da massa, o líquido que vai se formando ficará retido no fundo da vasilha pela camada superior. Ocorrerá então um significativo aumento da temperatura e da pressão da fase líquida, fazendo com que o conjunto (fase líquida mais fase sólida) funcione como uma panela de pressão. Os incautos, sem imaginar o que está acontecendo, costumam perfurar a massa superior, abrindo espaço para que a pressão seja liberada. Imediatamente jorrará com força descomunal um jato de líquido super quente (próximo dos 100ºC), que poderá causar queimaduras de primeiro grau.

5.2 Uso de corantes e essências

Caso deseje um sabão colorido, adicionar o corante no momento em que estiver dissolvendo a soda, o silicato de sódio e o caulim.

Querendo usar essência, adicionar aproximadamente 100 gramas da mesma na gordura já derretida com a temperatura entre 40 e 50ºC.

Por questão de comodidade pode-se fazer, antecipadamente, uma quantidade maior de lixívia, pois ela não estraga. Tenha sempre lixívia preparada de antemão, quando for fabricar qualquer produto químico que utilize soda cáustica. A lixívia preparada previamente, além de conferir uma qualidade melhor ao produto, está estabilizada, não causando outra reação na mistura, além da desejada.

6 DESODORANTES E ANTISSUDORAIS

O suor é o produto resultante do funcionamento das glândulas sudorais - glândulas sudorais apócrinas que se localizam nas axilas e zonas pilosas. Produzem suor apócrino, concentrado, rico em substâncias voláteis odoríferas, cujo pH é próximo à neutralidade 6,2 - 6,8 podendo chegar a 8. Por estar próximo à neutralidade permite o desenvolvimento de bactérias, o que lhe dá odor desagradável.
Desodorantes: são produtos cosméticos que tem por finalidade eliminar o odor desagradável do suor.

Antissudorais ou antitranspirantes: produtos que tem a finalidade de impedir a saída do suor à superfície da pele.

6.1 Classificação

Antissudorais: capazes de impedir o fluxo de suor. As substâncias mais usadas como antitranspirantes são: cloreto de alumínio, cloreto de zinco, sulfato de alumínio, hidroxicloreto de alumínio (cloridróxido de alumínio e cloridróxido de alumínio alantoinado).

Desodorantes: capazes de eliminar o odor desagradável do suor. Apresentam em sua composição substâncias bactericidas e antissépticas, impedindo o desenvolvimento de bactérias. O uso de substâncias aromáticas deve-se restringir somente ao efeito agradável em relação ao produto e não objetivando mascarar o odor, que é eliminado somente por ação germicida.

Principais substâncias utilizadas: ácido salicílico, ácido bórico, ácido benzoico, cloreto de benzalcônico, diclorofeno e hexaclorofeno(derivados fenólicos).

Obs.: hexaclorofeno = G11 = Irgasan DP300

6.2 Tipos

6.2.1 Antissudorais

- **Líquidos**: consistem em uma solução hidroalcólica (aproximadamente a 60%) de álcool absoluto, pode ser anidro ou cereais); substância adstringente, solúvel em álcool; substância umectante como o propilenoglicol, glicerina ou sorbitol; substância antisséptica; essência (observar o pH, que deverá se manter na faixa de pH ácido, entre 5.5 a 6.5, evitando assim que ocorram alterações de cor e odor).

- **Cremosos**: emulsão O/A mais substância adstringente (derivados de alumínio), essência. Deverá ser observada a estabilidade do produto.

- **Pó base pulverulenta**: (poder absorvente) que contribui para facilitar a ação antissudoral da substância ativa que deverá ser uniformemente distribuída para garantir a eficácia do produto. Deve-se também observar os recipientes, protegendo o produto da luz e umidade externas.

6.2.2 Desodorantes

- Pó: cuidados com a dispersão.

- **Líquido**: mesmo procedimento do antissudoral.

- **Bastão**: composição básica: estearato sódico, álcool etílico, substância umectante, substância bactericida, essência. Pode-se enriquecer a fórmula utilizando-se mentol (0,1%), obtendo-se um produto com característica refrescante não irritativo.

- **Aerosol**: forma prática de aplicação, isenta de água. Composição: álcool, substância antisséptica, essência, propelente ou mistura propelente. Hoje em dia foram desenvolvidos produtos sem álcool.

6.3 Formulações para desodorantes

a) Desodorante em pó

Ácido bórico........................................3g
Ácido salicilico.................................1g
Óxido de zinco.................................5g
Talco qsp.....................................100g
Essência......................................qs

b) Desodorante líquido

Hexaclorofeno.................................0,3g
Propilenoglicol...............................3ml
Álcool...........................................70ml
Água destilada qsp...........................100ml
Essência......................................qs

c) Bastão

Estarato de sodio...............................8g
Hexaclorofeno.................................0,30g
Propilenoglicol...............................3ml
Água destilada.................................25ml
Álcool etílico qs..............................100ml
Essência......................................qs

d) Aerosol

Composto quaternário de amônia...........0,75g
Essência......................................0,25g
Álcool etílico anidro.........................99ml
Concentrado..................................20%
Mistura propelente..........................80%

e) Creme desodorante (Henkel)

Fase A
Dispersão coloidal de álcool ceto-estearílico + emulsionantes não iônicos à
base de álcoois graxos saturados e
etoxilados (Emulgade 1700 B).......10%
Miristato de isopropila(Cetiol IPM).....3,5%
Conservantes......................qs

Fase B
Cloridróxido de alumínio (sol.a 50%)...18%
Propilenoglicol.............................2%
Água qsp..............................100ml

Preparação: Aquecer separadamente os ingredientes das fases A e B a 80°C.
Adicionar a fase B sobre a fase A, lentamente, sob agitação constante.
Resfriar mediante agitação até atingir 30°C.

f) Aerosol para os pés (Dragoco)

Trimetildodeca-trienol (Farnesol).......0,30%
Propilenoglicol..............................2,50%
Mistura de ésteres (PCL líquido BR).....1,20%
Undecylenamide DEA......................1,53%
Álcool etílico 96GL qs.....................100,00%
Essência.....................................1,53%

Preparação:
Misturar os ingredientes na sequência da fórmula.
Envase:
concentrado: 65%
propelente: 35%

7 PERFUMES

A pesquisa de mercado é o primeiro passo a ser tomado, para conhecer e caracterizar quem são seus futuros clientes. Essa pesquisa vai proporcionar ao empresário apresentar um produto de qualidade e diferenciado ao mercado.

O perfume é composto de três partes:

1. Notas de Cabeça. É o primeiro aroma que se sente ao cheirar o perfume (por exemplo essências mais voláteis, como limão, lavanda, pinho e eucalipto). Quando um perfume possui um aroma muito refrescante, suas notas são quase todas voláteis e seu aroma dura menos tempo.

2. Notas de Corpo. É o tipo de personalidade que o perfume representa, utilizam-se então essências menos voláteis e mais fortes. Estão entre elas: as aromáticas (tomilho), as especiarias (cravo), as florais, as químicas e as amadeiradas (patchuli). O aroma permanece na pele por aproximadamente 2 horas.

3. Notas de Fixação. É o aroma que fica na pele. Usam-se normalmente resinas, essências amadeiradas e de origem animal, como o musk, o castor.

7.1 Equipamentos para produção de perfumes

As posições e distribuição das máquinas e equipamentos, balcões de atendimento, depósitos, entre outros são importante para a integração das atividades de prestação de serviços a serem executadas e atingir satisfatoriamente a produção desejada, para tanto deve-se considerar tanto o layout interno (ambiente, decoração, facilidade de movimentação, luminosidade, entre outros) como o externo (vitrinas, fachada, letreiros, entradas e saídas, estacionamento, entre outros).

Para os iniciantes os equipamentos básicos são:
- Pipetas cilíndricas de 5 a 10 cm³ para medir pequenos volumes dos componentes do perfume;
- Provetas de 50, 100, 250 e 500 ml (cm³) para medir volumes maiores;
- Pipetador automático de borracha tipo "Biomatic" para pipetar pequenos volumes;
- Copos de béquer de várias capacidades para misturar os componentes;
- Baquetes de vidro para agitar as misturas;
- Funis de vidro e papéis de filtro para as filtrações;
- Frascos de vidro bem limpos para armazenar as composições;
- Balança semi-analítica (duas casas decimais) para a pesagem das substâncias citadas em gramas nas receitas.

Para a produção de composições aromáticas em maior escala são necessários ainda recipientes maiores tais como os tachos.
É importante não esquecer dos móveis e equipamentos para o escritório (computadores, fax, telefone, mesas, cadeiras, armários, etc.).

7.2 Matérias-primas

Água
Para a fabricação de perfumes, águas de colônia, etc, deve-se utilizar água destilada para evitar impurezas que poderiam turvar o perfume. Na ausência da água destilada, pode-se ainda adicionar 21g de bórax em cada litro de água de chuva colhida diretamente da atmosfera sem contato com o telhado. Dissolve-se o bórax, deixa-se depurar, filtra-se e coloca-se num recipiente de vidro bem limpo.
Álcool
O álcool é um dos produtos mais utilizados na fabricação dos Perfumes líquidos. Devemos utilizar álcool da melhor qualidade para obtenção de perfumes finos. Recomenda-se a utilização de álcool de cereais. Na ausência deste, utiliza-se álcool etílico de primeira qualidade.

Corantes
Para a coloração dos perfumes líquidos, usam-se, de preferência, soluções alcoólicas de corantes naturais, bálsamo, resinas, etc, ou substâncias vegetais tais como açafrão, clorofila, etc. Pode-se ainda, usar anilinas sintéticas, solúveis no álcool, sendo que a solução deve ser preparada com antecedência e filtrada.

Fixadores:
Os fixadores são substâncias de perfumes persistentes, que se utilizam nas composições, com a finalidade de fixar as substâncias de perfumes fugazes.

Fixadores animais:
i. Âmbar Gris (tintura). Deve-se utilizar 3% nos perfumes de âmbar, cravo, jacinto, lilás, muguet, resedá, verbena e em várias composições de perfumes de fantasia.

ii. Castóre (tintura). Deve-se utilizar 4% nos perfumes de âmbar e em várias composições de perfumes de fantasia.

iii. Civeta (tintura). Deve-se utilizar de 3-20% nos perfumes de âmbar, heliotrópio, ilangue-ilandue, jasmim, jacinto, lavanda, pele de Espanha e em várias composições de perfumes de fantasia.

iv. Musc (almíscas) (tintura). Deve-se utilizar 1-5% nos perfumes de chipre, crisântemo, feno, fougere, gerânio, orquídea, trevo e em quase todas as composições de perfumes quentes.

Fixadores vegetais
i. Balsamo de Tolú
Usa-se 10-25% nos perfumes de acácia, heliotrópio, jasmim, lilás, madressilva, mimosa, neroli, resedá, tuberosa, narciso e em vários perfumes de fantasia.

ii. Benjoim Absoluto (tintura a 10%)  
Usa-se 3-30% nos perfumes de âmbar, bergamota, cravo, heliotrópio, ilangue-ilandue, jacinho, lavanda, mimosa, muguet, opoponax, orquídea, patchuli, rosa, túlia, trevo e em várias composições de perfumes de fantasia.

iii. Estoraque Sintético (solução a 10%)  
Usa-se 3-30% nos perfumes de âmbar, eglantine, feno, jasmin, lavanda, patrichuli, resedá, rosa, verbena e em várias composições de perfumes fantasia.

iv. Fava Cumarú (tintura 10%)  
Usa-se 5-50% nos perfumes de cravo, feno, heliotrópio, ilangue-ilandue, muguet, rosa e em várias composições de perfumes de fantasia.

v. Íris (tintura a 10%)  
Usa-se 2-40% nos perfumes de íris, lírio, mimosa, violeta e em várias composições de perfumes de fantasia.

vi. Mirra (tintura a 10%)  
Usa-se 2-20% nos perfumes de acácia, ilangue-ilandue e em várias composições de perfumes de fantasia.

vii. Ólibano (tintura a 10%)  
Usa-se 1-20% em composições de perfumes de fantasia.
viii. Óleo de Opoponax Absoluto (tintura a 10%)
Usa-se 10-50% nos perfumes de acácia, ilangue-ilangue, jasmim, opoponax, neróli, rosa e em várias composições de perfumes de fantasia.

Fixadores artificiais
i. Ácido Fenilacético
Usa-se nos perfumes de acácia, fougere, jasmim e neróli.

ii. Antranilato de metila
Usa-se nos perfumes de acácia, jasmim, narciso, neróli, tuberosa e nas águas de colônia.

iii. Ácido benzoico
Usa-se na maior parte dos perfumes.

iv. Ácido cinâmico
Usa-se nos perfumes de tipos orientais.

v. Benzoato de cinamila
Usa-se nos perfumes dos tipos orientais e fantasia.

vi. Benzoato de amila
Usa-se nos perfumes de tipos orientais.

vii. Benzoato de isobutila
Usa-se nos perfumes de acácia, neróli e trevo.

viii. Benzoilidenacetona
Usa-se nos perfumes de fougere, lavanda, lilás, magnólia, trevo e nas águas de colônia.

ix. Benzoilfenona
Usa-se nos perfumes de fougere, gerânio e nos perfumes orientais.

x. Cinamato de benzila
Usa-se nos perfumes de fougere, tipos orientais e nas águas de colônia.

xi. Heliotropina (solução a 10%)
Usa-se na maioria dos perfumes.

xii. Indol
Usa-se nos perfumes jasmim, lilás e neróli.

xiii. Nerolina (solução a 10%)
Usa-se nos perfumes de neróli e nas águas de colônia.

xiv. Salicilato de Benzila
Usa-se na maioria dos perfumes.

xv. Santatol
Usa-se nos perfumes tipo oriental e de fantasia.

Essências
Diferentes concentrações de essência determinam o preço e a intensidade do perfume.

- Extrato. Essências super concentradas (entre 20% e 40%), elevam o preço do produto. Usa-se somente à noite.

- Perfume. Ainda muito concentrado (entre 15% e 20% de essência) também deve ser usado à noite.
- “Eau de Parfum”. A concentração de essência varia entre 10% e 15%. Apesar de ser mais diluído, o aroma ainda é forte pode ser usado durante o dia, mas em pouca quantidade.

- “Eau de Toilette”. Versão mais leve, com concentração entre 3% a 7%. É ideal para usar em dias quentes e até durante a prática de esportes. "Eau de cologne": concentração entre 3% e 5%. É o mais suave de todos.

7.3 Tipos de fragrâncias

Existem fragrâncias femininas e masculinas, são elas:

**Fragrâncias femininas:**

- Floral. Composição de essências de várias flores. Pode ser simples, Quando é baseada na essência de apenas uma flor e aldeídica ou sintética.
- Verde. Refrescante, lembra os odores de folhas, ervas e grama recém-cortada.
- Chipre. Baseada na composição madeira-musgo. É rica, forte e tenaz.
- Semi-oriental. Une florais, especiarias e madeiras.
- Oriental. Notas animais (almíscar e âmbar) e amadeiradas (sândalo e patchouli) tornam essa família a mais sensual e misteriosa.

**Fragrâncias masculinas:**

- Lavanda. Quando a essência de suas flores é dominante.
- Fougère. Mistura de âmbar, bergamota, musgo de carvalho e madeira.
- Chipre. Nota baseada numa harmonia clássica de bergamota, âmbar e musgo de carvalho.
- Aromática. Tomilho, menta, alecrim e anis são algumas das ervas utilizadas.
- Tabaco. Madeira, bálsamo e ingredientes que lembram o cheiro do tabaco.
- Madeira. Patchouli, vetiver, sândalo e cedro são algumas das essências utilizadas.
- Oriental. Complexo doce, que inclui baunilha, almíscar e âmbar.

**Nota:** para início do empreendimento se faz necessário testar, em pequena escala, antes de partir para a manipulação de uma composição aromática. Deve-se utilizar a proporção de um para dez nos testes.

O principiante deve, gradativamente, variar as proporções indicadas na receita afim de desenvolver sua criatividade na obtenção de novas fragrâncias.

7.4 Classificando os “perfumes”

Artigos de perfumaria podem ser classificados como extratos finos, tríplices e duplos, extratos comuns, loções, águas-de-colônia, águas aromáticas, etc. e podem ser de qualidade inferior ou superior.

7.4.1 Combinções

Criar a fragrância perfeita é uma arte delicada. Além de combinar dezenas de matérias-primas, o perfumista acrescenta uma dose de paixão, transformando o aroma num estado
de espírito. Perfumes estrangeiros lançados recentemente misturam romantismo, sofisticação, sensualidade e jovialidade.

7.3.2 O processo

Para a preparação dos diferentes tipos de perfume, pode-se partir das chamadas essências, diluindo-as em álcool ou fazendo uma solução alcoólica de concentração desejada diretamente com os princípios aromáticos, sob a forma de óleos essenciais. Designa-se por essências as misturas elaboradas com princípios aromáticos ou fixadores e, em certos casos, com corantes. Os princípios aromáticos, empregados nas chamadas essências, podem apresentar-se sob a forma de óleos essenciais, de essências propriamente ditas ou de tinturas, os fixadores, sob forma de resina, bálsamo, etc., e os corantes são geralmente empregados sob a forma de soluções alcoólicas. Os extratos, loções, águas-de-colônia, etc., são soluções alcoólicas dessas essências dos princípios aromáticos.

- **Princípios aromáticos.** São empregados na proporção de 2 a 10% e a proporção justa é determinada pela intensidade de odor do princípio aromático (perfumes, muito penetrantes, fortes, suaves e fracos), pela concentração do princípio aromático (óleo essencial, essência, tintura), pelo tipo de produto que se deseja preparar (perfume de toucador, para lenços, etc.) e pela classe do produto (artigo fino ou vulgar).

- **Fixadores.** São usados na proporção que oscila entre 0,1 e 0,5% e precisam preencher certos requisitos, tais como: serem perfeitamente solúveis em álcool e nos princípios aromáticos, serem empregados em concentração adequada, não terem odor que contraste ou prejudique os princípios aromáticos, e serem incoloros ou pouco coloridos.

- **Solventes.** São empregados em proporções que integralizem 100% com a porcentagem dos princípios aromáticos e fixadores. O álcool etílico, geralmente usado como solvente, precisa obedecer a certas condições, tais como: ser puro e retificado (isento de fusel), ter concentração adequada, usualmente de 90º a 95º; e ser incolor e inodoro. A água usada como solvente, deve ser destilada ou proveniente do processo de extração com vapor. Uma vez escolhida a combinação dos princípios aromáticos e fixadores, processa-se à diluição a frio com o álcool na concentração adequada. A solução deve ser agitada, guardada em lugar fresco e meio escuro. Se a solução apresentar-se turva, trata-se com carbonato de magnésio, filtrando-se, em seguida, em papel-filtro comum.

A fabricação de perfumes é complexa, neste caso o futuro empreendedor deve ter um conhecimento profundo do ramo.

Algumas observações importantes:

1º Na fabricação, é importantes experimentar as receitas em pequena escala (para preparar, em menor escala que a receita, dividem-se as quantidades indicadas por um número);

2º Usar as substâncias indicadas para fabricação do perfume desejado, não as substituindo por outras mais fáceis de encontrar ou mais baratas. Substituições só são aconselháveis quando se tenha comprovado a eficiência dessas essências, não resultando assim em prejuízo;

3º As quantidades, concentrações e outras características, como a densidade do perfume, etc., devem manter-se conforme orienta a receita, podendo variar somente quando a prática e o bom-senso assim o indicarem;

4º Os perfumes devem ser conservados em frascos bem fechados, de modo que o contato com o ar não os oxide;
5º Os frascos de perfume devem ser guardados em locais protegidos da claridade, a fim de não provocar alterações no aroma;

6º Querendo experimentar um perfume, é melhor vaporizá-lo nas costas da mão ou no punho, lembrando que o aroma varia de pele para pele e que esta não deve ser molhada, mas apenas salpicada;

7º Não se deve esfregá-lo, para não mascarar o aroma;

8º Ao cheirar, não aproximar demasiadamente o nariz, pois um bom perfume se sente a certa distância e deixa um rastro;

9º Nunca experimentar mais que três fragrâncias ao mesmo tempo.

Fonte:< http://www.respostatecnica.org.br >

8 GEL

8.1 Definição

Gel hidrofilico é uma preparação semi-sólida composta de partículas coloidais que não se sedimentam (ficam dispersas). Geralmente, as substâncias formadoras de géis são polímeros que, quando dispersos em meio aquoso assumem conformação doadora de viscosidade à preparação.

Existem várias substâncias que podem formar géis sendo que as mais empregadas como bases em cosmética são: o polímero carbóxvinílico (Carbopol 940) fornecido na forma ácida e neutralizado durante a preparação com uma base, gerando géis com maior viscosidade e pH entre 6,5 e 7,5; e a hidroxi-etil-cellulose (gel de Natrosol) que em concentração adequada intumesce com a água formando géis de consistência média e de característica não-iônica.

Os géis têm sido muito usados como bases dermatológicas pois possuem bom espalhamento, são não-gordurosos e podem veicular vários princípios ativos hidrossolúveis e lipossomais. São mais usados para as peles mistas ou oleosas. O gel-creme são emulsões contendo alta porcentagem de fase aquosa e baixíssimo conteúdo óleos, estabilizadas por colóide hidrofílico. São também chamados de cremes oil-free. Trata-se de uma preparação que tem sido largamente utilizada, pois em um gel-creme é possível veicular substâncias lipossolúveis, tais como filtros solares, princípios ativos oleosos, sem que o produto final deixe na pele uma sensação gordurosa. Podem ser usados em todos os tipos de pele.

9 CREMES E EMULSÕES

Cremes e emulsões são dispersões de duas fases não miscíveis entre si os quais com a ajuda de um emulsionante formam um sistema homogêneo.

Estes produtos são constituídos no geral por vários componentes, sendo os básicos e principais:

- agentes doadores de consistência, agentes engordurantes, emulsionantes, princípios ativos ou aditivos especiais, água, conservantes, perfume, corantes ou pigmentos.

Do ponto de vista técnico da química dos tensoativos, uma emulsão, e um creme são um só produto, na prática porém o creme corresponde a uma “emulsão” consistente, não fluida enquanto que a emulsão apresenta a característica fluida.

No desenvolvimento ou elaboração de um creme ou emulsão deverá ser considerada a finalidade a que se destina e característica da epiderme, deverá ser facilmente adsorvida, não deverá ser irritante, isto é, não deverá ocasionar problemas para o individuo que a utiliza, por exemplo, alergias.
Do ponto de vista médico-cosmético deverá ser: não irritante, ser estável (não deverá separar-se em seus componentes), não degradar (MO), compatível com princípios ativos e aditivos especiais, facilmente adsorvido pela epiderme.

Durante a escolha dos componentes deverão ser levados em conta as questões acima descritas.

9.1 Tipos de emulsões

A) Óleo em água (O/A)
No sistema O/A a água engloba a partícula de óleo, assim a fase externa sendo água não atuam como engordurante mas sim apresentam antes um efeito evanescente.

Estas emulsões e cremes são utilizados para produtos que não deixam um efeito engordurante, usados principalmente como cremes para o uso durante o dia e cremes evanescentes. São facilmente laváveis com água, podendo durante a aplicação ocorre um esbranquiçamento o qual desaparece após completamente adsorvido. Como a fase externa é água, estes produtos tendem a secar superficialmente formando uma crosta. As embalagens mais adequada são vidro, porcelana e plástico, evitando-se o uso de embalagens metálicas, pois podem ocorrer oxidação e corrosão.

B) Água em óleo (A/O)
No sistema A/O, a fase oleosa engloba a fase aquosa, assim a fase externa sendo óleo apresenta efeito engordurante deixando a epiderme com aspecto brilhante. Estas emulsões são usados principalmente como cremes para noite, creme de massagem, creme emoliente, etc.

9.2 Preparo das emulsões

a) Sistema O/A: Agentes engordurantes, doadores de consistência, emulsionantes e aditivos lipoduráveis são fundidos em banho-maria a 70-80ºC. Aquecimento com fogo direto ou similar não é indicado, pois pode ocorrer um superaquecimento e ocorrer degradação térmica dos componentes.

Água e componentes hidrossolúveis são homogeneizados e aquecidos a 75-85ºC e adicionados lenta e continuamente à fase oleosa sob constante agitação. Mantêm-se a agitação até esfriar à temperatura ambiente evitando a incorporação de ar. No caso de aditivos que não apresentam estabilidade térmica, deverão ser adicionados ao creme já frio. No caso de pigmentos, o creme deverá ser preparado em um homogeneizador adequado (Tipo Sigma). As essências são adicionadas ao creme frio ou no máximo à 40ºC.

b) Sistema A/O: o método de preparo é similar ao sistema O/A sendo que a água deverá ser adicionada parceladamente e após a formação de creme. Essências a frio ou até 40ºC

Estabilidade das emulsões:

O melhor e mais seguro teste é observar o produto na embalagem pré determinada durante um longo tempo de estocagem em condições climáticas variadas. Deve-se levar em consideração a alcalinidade do vidro assim como o efeito da luz e temperatura. Este teste de estocagem (Shelf-Test) dificilmente poderá ser substituído por testes acelerados (teste com centrífuga, teste com variação de temperatura, teste com vibração).

Conclusões e recomendações

É de fundamental importância para quem trabalha com produtos químicos as regras mínimas de segurança. Para quem pretende atuar com produtos de higiene é importante lembrar que irá trabalhar com produtos ácidos e básicos que oferecem grande risco a pele, os olhos, os pulmões etc. Portanto é indispensável o uso de Equipamentos de Proteção Individual – EPI e das Boas Práticas de Fabricação – BPF.
Referências


Anexos

FORMULAÇÕES BÁSICAS

Formulações básicas são aquelas a partir das quais é possível desenvolver um variado número de produtos, acrescentando-se essências, óleos e extratos que irão diferenciá-los de outros produtos disponíveis no mercado. O uso de matérias-primas novas ou exóticas ajuda muitas vezes os fabricantes de cosméticos a obterem vantagens na disputa de mercado.

Seguem abaixo formulações básicas que podem ser desenvolvidas.

<table>
<thead>
<tr>
<th>Fase</th>
<th>Nome técnico</th>
<th>Nome comercial</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Mente de glicerila</td>
<td>Lipal GAM (1)</td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>Mentho-laranja</td>
<td>Lipal UCMS</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>Hidróxido de etano</td>
<td>Cetas DB (1)</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Adipato de butila</td>
<td>Lipal AD8 (1)</td>
<td>5,00</td>
</tr>
<tr>
<td></td>
<td>Açoço</td>
<td>Cetas 50 (1)</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>Oleo medicinal branco</td>
<td></td>
<td>8,00</td>
</tr>
<tr>
<td></td>
<td>Lantana amílica USP</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>B</td>
<td>Hidrobenzoato de proplila</td>
<td></td>
<td>0,65</td>
</tr>
<tr>
<td></td>
<td>Sorbitol</td>
<td></td>
<td>5,00</td>
</tr>
<tr>
<td></td>
<td>Triandolamina</td>
<td></td>
<td>0,30</td>
</tr>
<tr>
<td></td>
<td>Hidrobenzoato de merta</td>
<td></td>
<td>0,15</td>
</tr>
<tr>
<td>C</td>
<td>Agua</td>
<td></td>
<td>qsp 100,00</td>
</tr>
<tr>
<td></td>
<td>Fragância</td>
<td></td>
<td>92</td>
</tr>
</tbody>
</table>

Preparações: aquecer separadamente as fases A e B, verter a fase A sobre a fase B sob agitação moderada. Refriar até 40°C. Incorporar a fase C.
<table>
<thead>
<tr>
<th>Fase</th>
<th>Nome Técnico</th>
<th>Nome Comercial</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aqua desmineralizada</td>
<td></td>
<td>65,05</td>
</tr>
<tr>
<td></td>
<td>Propileno glicerol</td>
<td></td>
<td>5,00</td>
</tr>
<tr>
<td></td>
<td>Trietanolamina</td>
<td>Pentavitin (2)</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>Sacarida isomeroato</td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>PEG-25 PABA</td>
<td>Unipabol U-17 (2)</td>
<td>1,00</td>
</tr>
<tr>
<td>B</td>
<td>Monoesestrato de glicerina</td>
<td>Quimulin AEG (2)</td>
<td>8,00</td>
</tr>
<tr>
<td></td>
<td>Monoesestrato de propileno glicerol</td>
<td>Quimulin APY (2)</td>
<td>7,00</td>
</tr>
<tr>
<td></td>
<td>Oleo mineral 70</td>
<td></td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>PEG 20 do álcool esterificado</td>
<td></td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>Monoesestrato de propileno glicerol</td>
<td>Quimulin RH 4 (2)</td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>BHT</td>
<td></td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Misturado de isopropila + lecitina + tocoferol</td>
<td>Unifilter U-14 (2)</td>
<td>2,00</td>
</tr>
<tr>
<td>C</td>
<td>Essência</td>
<td></td>
<td>0,30</td>
</tr>
</tbody>
</table>

Preparação: aquecer e misturar a fase A até 75º C. Aquecer a fase B até 80º C e misturar. Juntar a fase B sobre a fase A e homogeneizar completamente. Resfriar com agitação constante até 40º C e adicionar a fase C. Continuar resfriando com agitação até 30º C.
**LOCÃO HIDRATANTE**

<table>
<thead>
<tr>
<th>Fase</th>
<th>Nome técnico</th>
<th>Nome comercial</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Silicato de alumínio e magnésio</td>
<td>Vasem (4)</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Água</td>
<td></td>
<td>26,25</td>
</tr>
<tr>
<td></td>
<td>Carbomer 941</td>
<td>Carbopol 941 (10)</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Glicerina</td>
<td></td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>Trietanolamina</td>
<td></td>
<td>0,10</td>
</tr>
<tr>
<td>B</td>
<td>Oleo mineral</td>
<td></td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>Vaseline</td>
<td></td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>Ácido etílico</td>
<td></td>
<td>1,60</td>
</tr>
<tr>
<td></td>
<td>Alcool etílico</td>
<td></td>
<td>0,08</td>
</tr>
<tr>
<td></td>
<td>Monostearato de glicerila SE</td>
<td>1,40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetato de cetila e álcool de lanolina acetilado</td>
<td>2,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silicone 300</td>
<td>DC Silicone 300 (5)</td>
<td>0,60</td>
</tr>
<tr>
<td></td>
<td>Preservante</td>
<td></td>
<td>q.s.</td>
</tr>
</tbody>
</table>

**PREPARAÇÃO:** aquecer e misturar a fase A até 75° C. Aquecer a fase B até 80° C e misturar. Juntar a fase B sobre a fase A e homogeneizar completamente. Refrigerar com agitação constante até 40° C e adicionar a fase C. Continuar refrigerando com agitação até 30° C.

---

**LOCÃO OIL-FREE COM PROTETOR SOLAR**

<table>
<thead>
<tr>
<th>Fase</th>
<th>Nome técnico</th>
<th>Nome comercial</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Oleo de silicone</td>
<td></td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>Metocixamato de octila</td>
<td>Neo Heliofan AV</td>
<td>7,00</td>
</tr>
<tr>
<td>B</td>
<td>Emulsificante polimérico</td>
<td>Permulen TR</td>
<td>20,00</td>
</tr>
<tr>
<td></td>
<td>Água desionizada</td>
<td>gsp 100,00</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>EDTA dissolvido</td>
<td></td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>Glicerinato de potássio</td>
<td></td>
<td>0,10</td>
</tr>
<tr>
<td>C</td>
<td>Propilenoglicol</td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Metil-dibromo clorometila e fenoxietanol</td>
<td>Mercuard 1220</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>Extrato sifólico de babosa</td>
<td>1,50</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Alcool pentilenico</td>
<td>T-Pentanol</td>
<td>0,50</td>
</tr>
<tr>
<td>E</td>
<td>Trietanolamina</td>
<td></td>
<td>0,40</td>
</tr>
</tbody>
</table>

**PREPARAÇÃO:** misturar os componentes das fases A e B separadamente. Verter a fase B na fase A com agitação até completa homogeneização. Solubilizar o preservante no propilenoglicol e adicionar o extrato de babosa (fase C). Adicionar A a mistura A+B. Adicionar D, homogeneizar e por último, neutralizar com trietanolamina (fase E).

---

**GEL NUTRITIVO**

<table>
<thead>
<tr>
<th>Fase</th>
<th>Nome técnico</th>
<th>Nome comercial</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EDTA dissolvido</td>
<td></td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>Metil paraben</td>
<td></td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Água destilada</td>
<td>gsp 100,00</td>
<td>q.s</td>
</tr>
<tr>
<td></td>
<td>Aminomethyl propanol</td>
<td>AMP-95</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Polímero carboxivinílico</td>
<td>Synthalen K</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>Extrato vegetal de Acacia senegal</td>
<td>Acácia Colágen</td>
<td>5,00</td>
</tr>
<tr>
<td></td>
<td>Extrato vegetal de Asparagus officinalis</td>
<td>Ummundant</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Extrato vegetal de Camellia sinensis</td>
<td>Herbosal Green Tea</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Essência</td>
<td></td>
<td>q.s</td>
</tr>
</tbody>
</table>

**Preparação:** adicionar aos poucos a fase B sobre a fase A, agitando até total homogeneização. Adicionar a fase C.

---

Copyright © Serviço Brasileiro de Respostas Técnicas - SBRT - [http://www.respostatecnica.org.br](http://www.respostatecnica.org.br)
As bases devem ser manipuladas com instrumentos limpos, lavados com água e sabão, desinfetados com álcool a 77% ou 70%. Antes de colocar a base em um recipiente para armazenamento, verifique a limpeza do frasco.

A fabricação de produtos cosméticos, de higiene e limpeza, está sujeita à fiscalização da Agência Nacional de Vigilância Sanitária – Anvisa, o registro dos produtos no Ministério da Saúde e a participação de um responsável químico habilitado para a formulação dos produtos.

As formulações publicadas foram retiradas do periódico *Cosmetics & Toiletries*. Recomenda-se a consulta a um químico especializado na área de cosméticos, que possa testar e aprovar as formulações, antes destas serem colocadas no mercado consumidor.

Fonte: SBRT, [http://www.respostatecnica.org.br](http://www.respostatecnica.org.br)

### CREME PARA BARBA

Óleo de amêndoas : 120 gramas  
Glicerina pura 50 gramas  
- Espermacete .... 30 gramas  
Carbonato de Potassa 15 gramas  
Mentol : : : : : 5 gramas  
Essências de Alfazema 5 gramas  
Sabão de coco 500 gramas  
Água 1 litro

#### MODO DE FAZER:

a) Derreter, em banho-maria 500 gramas de sabão de coco cortado em pedacinho em um litro de água.

b) Em seguida, derreter o óleo, a glicerina, o espermacete e o carbonato de alfazema em um vasilha esmaltada.

c) Em seguida, colocar a solução de sabão aos poucos, agitando-se até obter um substancia homogênea.

d) No final, colocar o mentol e a essência agitando-se, até Misturar completamente.

e) Esta pronto para a embalagem.
CREME CONTRA RACHADURA DAS MÃOS

Manteiga de cacau: 90 gramas
Ôleo de amêndoa doce: 90 gramas
Cera branca, o 90 gramas
Essências de lavanda 2 gramas
Essências de Alecrim : 2 gramas

MODO DE FAZER:

a) Misturar em banho-maria a manteiga, o óleo e a cera.

b) A mistura- quando estiver quase fria, adicionar as essências. Esta pronto para ser embalada

Obs.: * Cuidado com o fogo, pois os ingredientes são inflamáveis
Embalar logo, pois as essências evaporam rápido.

CREME RINSE

1 Álcool Ceto Estearilico 4
2 Cloreto de Cetil Trimetil Amônio 3,5
3 Lanolina 0,2
4 Ácido Cótrico 0,5
5 Essência Dionizada 1
6 Água 90,8

MODO DE FAZER:

Misturar 1,2,3,4,6 à 75ºC Manter à temperatura 75ºC durante aproximadamente 20 Minutos Resfriar até 35ºC mantendo a homogeneização Adicionar 5 Homogeneizar
Fase Seq Produto Qtde(%)
A 7 Lanolina 3
A 8 Cera de Abelha Alvejada 2
A 9 Propil Parabeno (Nipazol) 0,04
B 1 Trietanolamina 1,2
B 2 Metil Parabeno (Nipagim) 0,15
B 3 Água Deionizada 56,61
C 1 Essência 0,5

MODO DE FAZER:

DESODORANTE PARA PÉS
Misturar todos os ingredientes sob agitação
Fase Seq Produto Qtde(%)
1 Álcool Neutro 80,8
2 Mentol 0,5
3 Óleo Essencial de Menta 1
4 Salicilato de Metila 0,2
5 Cânfora 0,5
6 Propileno Glicol 2
7 Água Deionizada 15

DESODORANTE LÍQUIDO
Misturar todos os ingredientes sob agitação
Fase Seq Produto Qtde(%)
1 Álcool Neutro 64
2 Essência 3
3 Cloridroxido de Alumínio 2
4 Propileno Glicol 1
5 Água Deionizada 30

AROMATIZANTE PARA GAVETAS (QUARTOS 1)
Pingar o Óleo Essencial no algodão e colocar no fundo da gaveta
Fase Seq Produto Qtde(%)
1 Bola de Algodão 1
2 Óleo Essencial de Lavanda 15 Gotas
3 Óleo Essencial de Ylang 5 Gotas
4 Óleo Essencial de Gerânio 5 Gotas

2 FORNECEDORES
A listagem dos fornecedores apresentada aqui serve apenas como referência inicial. Eles foram consultados em diretórios disponíveis na Internet. O SBRT não tem qualquer responsabilidade quanto à idoneidade dos fornecedores. Cabe ao empreendedor optar por aquele que melhor atender as suas necessidades (qualidade, preço, prazo de entrega, etc.).

2.1 Fornecedores de maquinários
Kilinmak Ind. Com. e Exp. LTDA
Máquina para fabricação de sabão e sabonetes.
Tel: (11) 6915-8344
Site: http://www.kilindas.com.br
Máquinas MAN
Equipamentos para sabão e sabonetes.
Tel: (14) 3408-4400 / Fax: (14) 3408-4401
Site: http://www.man.com.br

Mazbra S/A Indústria e Comércio
Equipamentos para fabricação de sabão, sabonetes e glicerina.
Tel: (11) 5631-5500 / Fax: (11) 5631-1668
Site: http://www.mazbra.com.br

Rodrinox Indústria e Comércio LTDA
Telefax: (11) 5031-5982 / 3942

2.2 Fornecedores de Moldes

Alquimix Arte & Design
Fabricam moldes e formas em borracha de silicone para produção de sabonetes artesanais.
Tel: (11) 5073-4801 / (11) 5058-2209
Site: http://www.alquimix.com.br

Arte feita
Atacado de formas em pvc e silicone para sabonetes.
Tel: (11) 4330-9200
Site: http://www.artefeita.com.br

Interpan Formas & Cia
Formas de acetato e silicone para sabonetes.
Tel: (11) 5660-8516 / Fax: (11) 5660-8246
E-mail: interpan@ig.com.br
Site: http://geocities.yahoo.com.br/interpanbr/index2.html

Mago
Distribui formas de acetato e silicone para sabonete.
End: Rod. Raposo Tavares, 6009, Km 16. São Paulo – SP.
Tel: (11) 3781-3272
Site: http://www.mago.ind.br

2.3 Fornecedores de matéria-prima

Ferquima Indústria e Comércio LTDA
Fabrica e comercializa óleos essenciais para a indústria cosmética, bases hidrossolúveis para cremes e xampus.
End: Estrada Mineração Ouro Branco, 2.017. São Paulo - SP.
Tel: (11) 4158-3544 / 4159-1784
Site: http://www.ferquima.com.br

Givaudan Brasil
Cria e fornece fragrâncias, sabores e ingredientes especiais para cosméticos em geral.
End: Av. Engenheiro Billings, 2.185. São Paulo - SP.
Tel: (11) 3760-8000
Site: http://www.givaudan.com.br

Quorum Fragrâncias Indústria e Com. LTDA
Oferece diversificada linha de essências para uso em cosméticos e etc.
End: Via Natalino Verdi, 120. Charqueada – SP.
Tel: (19) 3186-9600 / 3186-9619
Site: http://www.quorumfragrancias.com.br

Rei das Essências
Insumos e essências naturais para cosméticos.
End: Rua: Tupi 85, Loja 09. Belo Horizonte - MG.
Tel: (31) 3224-1516
Site: http://eidasessencias.com.br

African Artesanato
Fornecedor de matéria-prima.
Loja em São Paulo
End: Rua Tiradentes, 804, em frente à ACM, Centro. Guarulhos – SP CEP: 07090-000
Tel: (11) 6099-2377 / 6099-2371
Fax: (11) 6099-2279
E-mail: africanart@africanart.com.br
Site: http://www.africanart.com.br

Alfanove
Distribuem produtos para Indústria de Cosmético em Geral.
Tel.: (11) 6352-0095
E-mail: alfanove@ig.com.br

Arte Feita
Fornecem essências, bases de glicerina, matérias-prima líquidas e sólidas, além de promover diversos cursos na área de cosmética.

Loja São Bernardo do Campo - SP
End: Rua São Savino, 20.
Tel: (11) 4123 1947
Loja São José dos Campos
Site: http://www.artefeita.com.br

Beraca Sabará Químico Ingredientes Ltda - Divisão Food/Feed
Fornecedor de corantes para cosmético, medicamentos e produtos de toucador
End: Rua Souza Melo, 73/75. São Paulo – SP CEP: 03770-000
Tel: (11) 6643-5018 Fax: (11) 6643-5115
E-mail: vanice@gruposabara.com.br
Site: http://www.gruposabara.com.br

Basequímica Produtos Químicos Ltda
Fornecem dentre seu portfólio de produtos essências, glicerina e corantes.
End.: Rua Uruguiai, 1493, Parque Industrial Quito Junqueira. Cep: 14075-330. Ribeirão Preto - SP.
Tel/Fax: (16) 2101-1200
E-mail: vendas@basequimica.com.br
Site: http://www.basequimica.com.br/produtos.htm

Brazmo Indústria e Comércio Ltda
Atua no suprimento químico para as indústrias de cosméticos, alimentícia e outras.
End.: Rua Moisés Kahan, 134, Barra Funda. São Paulo - SP.
Tel/Fax: (11) 3879-5600
E-mail: brazmo@brazmo.com.br

Casa das Essências
Matéria-prima para fabricação de perfumes e cosméticos em geral.
End: Rua Silveira Martins, 78, Sé. São Paulo –SP Cep: 01019-000
Chemyunion Química Ltda
Fabricante de princípios ativos para indústria de cosméticos.
End: Rua José de Oliveira Cassú, 447. Sorocaba – SP Cep: 18103-065
Tel: (15) 2102-2002
DDG: 0800 772-5583
Fax: (15) 2102-2001
E-mail: vendas@chemyunion.com.br
Site: http://www.chemyunion.com.br

Distribuidora Mirai Ltda
Fornecedora de corantes para cosméticos, medicamentos e produtos de toucador.
End: Rua Tenente Leopoldino, 416. Mirai - MG Cep: 36790-000
Tel: (32) 3426-1809 Fax: (32) 3426-1093
E-mail: dimirai@interminas.com.br

Duarte Amaral e Cia Ltda.
Comercializam produtos químicos em pequenas e grandes embalagens. Dentre sua linha de produtos encontram variados tipos de glicerinas e essências.
Tel / Fax: (11) 6604-2533 / 6604-3991
São Paulo – SP.
Site: http://www.duarteamaral.com.br

EMFAL – Especialidades Químicas
End.: Rua K, 105, Jardim Piemonte. Betim - MG.
PABX: (31) 3597-1020
E-mail: emfal@emfal.com.br
Site: http://www.emfal.com.br

Franchel Cosméticos Ltda
Fornecedor de almíscar
End: Pça. Nossa Sra. de Lourdes s/n, Qd 46, Lt 1/6. Aparecida de Goiânia – GO
Cep: 74912-390
Telefax (62) 278-0500
E-mail: ti@gotasua be.com.br

Indústrias de Plásticos Caria Ltda
Fabricantes de excipientes para remédios e cosméticos.
End: Rua Guaicurus, 760. São Paulo – SP. Cep: 05033-001
Tel: (11) 3872-3122
Fax : (11) 3864-8833
E-mail: vendas@caria.com.br
Site: http://www.caria.com.br

MAIZ Artes & Essências
Venda de matérias-primas para perfumes e cremes em geral.
End.: Rua Carlos Gomes, 143, Centro. Cep: 40060-330. Salvador – BA.
Tel.: (71) 3328-9720
Site: http://www.maizesessencias.com.br

Marte Balanças e Aparelhos de Precisão Ltda
Fornecedor de água destilada.
Tel: (21) 2673-4649
Fax: (21) 2673-4607
E-mail: marte-rj@martebal.com.br
Site: http://www.martebal.com.br
Natu's Life Indústria e Comércio Ltda
Fabricação de artigos de perfumaria e cosmétricos: Álcool, lauril, essência e extrato.
End: Rua N1, 275, Jorge Américo. Feira de Santana – BA. Cep: 44020-660
Telefax: (75) 3226-8354
E-mail: natus.life@bol.com.br

Primola Fragrâncias Ltda
Fabricação de essência.
End.: Av Luis Tarquínio Pontes - S/N. Qd 05, Lote 32, Galpão 20, Jd Belo Horizonte. Lauro de Freitas – BA.
Tel.: (71) 3379-9962/ 3379-9889/ Fax: (71) 3379-9962
E-mail: primola@uol.com.br

Química Bpar Ltda
Atua na distribuição de produtos químicos para os segmentos alimentício, cosmético e farmacêutico.
End.: Alameda dos Maracatins, 992, Conj. 81, Bloco A, Moema. São Paulo - SP.
Tel/Fax: (11) 5094-2050
E-mail: bpar@bpar.com.br
Site: http://www.bpar.com.br/produtos.html

Royal Marck Indústria Química
Produtos para lavanderias industrial, hospitalar e doméstica, produção de fragrâncias para vários setores, matérias-primas para fabricação de cosméticos, automotivos etc.
Tel/Fax: (11) 6412- 8018.
E-mail: royalmarck@royalmarck.com.br
Site: http://www.royalmarck.com.br/

Sasil - Distribuidora de Termoplásticos e Produtos Químicos
Produtos químicos.
End: Alameda Granjas Rurais, Presidente Vargas, Lt 17. Salvador – BA CEP: 41297-430
Telefax: (71) 3293-8500
E-mail: sasilba@sasil.com.br
Site: http://www.sasil.com.br

Sciavicco Comércio e Indústria Ltda
End.: Rua Niquelina, 921, Sta. Efigênia. Belo Horizonte – MG.
Tel.: (31) 3463-2272 / Fax: (31) 3467-2819
Site: http://www.sciavicco.com.br/produtos.htm

Via Fiori Perfumaria e Cosmética Ltda
Fabricação de artigos de perfumaria e cosméticos: álcool de cereais e essências.
End: Rua São Bartolomeu, 31, Amparo. Santo Antônio de Jesus - BA CEP: 44572-630
Telefax: (75) 3631-2150
E-mail: viafiori@aceleranet.com.br

3 LEGISLAÇÃO

ANVISA - Agência Nacional de Vigilância Sanitária
Oferece a "VISELEGIS", nesta área onde é possível consultar toda a legislação específica para determinados produtos utilizando a palavra-chave "sabonete".
Site: http://www.anvisa.gov.br/legis/index.htm

NBR13903 1997 (Norma técnica)
Sabão e sabonete em barras - Determinação de umidade e voláteis - Método do forno de microondas

Portaria INMETRO / MICT 95 de 22/08/1997
Aprova o Regulamento Técnico Metrológico que estabelece os critérios para comercialização e metodologia para execução do exame de verificação da quantidade líquida dos produtos sabão e sabonete em barra.

**Portaria INMETRO / MICT número 3 de 07/01/1998**
Verificação do conteúdo líquido de sabonete e sabão em barra.

**Portaria INMETRO / MDIC número 87 de 11/06/1999**
Proposta de regulamentos estabelecendo as condições a que devem satisfazer o acondicionamento dos produtos sabão e sabonete em barra para serem comercializados.

**Portaria INMETRO / MDIC número 126 de 19/11/1999**
Estabelecer critérios para comercialização, indicação do conteúdo líquido e metodologia de verificação do conteúdo líquido dos produtos sabão e sabonete em barra.

**Lei nº 8.078 DE 11/09/1990**
Código de Defesa do Consumidor

**Resolução RE nº 717, de 23 de março de 2005 da ANVISA**
Concede os registros dos produtos de higiene pessoal, cosméticos e perfumes, grau de risco 2, na conformidade da relação anexa.

**Registro de Produtos.**
Algumas resoluções que destacam os procedimentos

**RESOLUÇÃO Nº 79/00 da ANVISA.** Estabelece normas e procedimentos para registro de Produtos de Higiene Pessoal, Cosméticos e Perfumes, adota a definição de Produto Cosmético.

**RESOLUÇÃO RDC Nº 161/01.** Estabelece a Lista de Filtros Ultravioletas Permitidos para Produtos de Higiene Pessoal, Cosméticos e Perfumes.

**RESOLUÇÃO RDC Nº 162/01.** Estabelece a Lista de Substâncias de Ação Conservantes para Produtos de Higiene Pessoal, Cosméticos e Perfumes.

**RESOLUÇÃO Nº 481/99.** Estabelece parâmetros para controle microbiológico de Produtos de Higiene Pessoal, Cosméticos e Perfumes.

**PORTARIA Nº 295/98.** Estabelece Critérios para Inclusão, Exclusão e Alteração de Concentração de Substâncias utilizadas em Produtos de Higiene Pessoal, Cosméticos e Perfumes.

O que se chama de essências, perfumes, bouquets ou fragrâncias, na Legislação Brasileira, são chamados de "Composição Aromática". Para mais informações consultar o site da ANVISA (http://svs.saude.gov.br).


É importante ainda verificar a legislação estadual, geralmente disponível nos sites das Secretarias Estaduais de Saúde.

4 Instituições

**ABC - Associação Brasileira de Cosmetologia**  
Rua Ana Catharina Randi, 25 - Jd. Petrópolis - São Paulo - (SP)  
04637-130  
Tel.: (0xx11) 5044 5466 / 5044 5528  
[http://www.abc-cosmetologia.org.br](http://www.abc-cosmetologia.org.br)

**ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS**  
[http://www.abnt.org.br](http://www.abnt.org.br)

**AGENCIA NACIONAL DE VIGILÂNCIA SANITÁRIA**  
[http://svs.saude.gov.br](http://svs.saude.gov.br)

**INMETRO**  
[http://www.inmetro.gov.br](http://www.inmetro.gov.br)

**MINISTÉRIO DA SAÚDE**  
[http://www.saude.gov.br](http://www.saude.gov.br)

**Nome do técnico responsável**

Elisabeth Flávia Roberta Oliveira da Motta

**Nome da Instituição do SBRT responsável**

REDETEC – Rede de Tecnologia do Rio de Janeiro

**Data de finalização**

15 mai. 2007